

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

How to Use

This repository requires DragonRuby Game Toolkit. You can purchase a license from http://dragonruby.org.

If your income is below $1000 per month, are a “student”, or are a “big time Raspberry PI enthusiast”, contact Amir at ar@amirrajan.net with a short explanation of your current situation, and he’ll set you up with a free license, no questions asked.

	Download DragonRuby Game Toolkit.

	Unzip.

	Navigate to your game folder using terminal (the default game folder is ./mygame/app)

	git clone https://github.com/DragonRuby/dragonruby-game-toolkit-contrib or download and unzip into the ./mygame/app directory.

	Your directory structures should look like the following:

DragonRuby
|
+- mygame/
 |
 +- app/
 |
 +- main.rb
 +- repl.rb
 +- documentation/
 |
 +- dragonruby-game-toolkit-contrib/ (this repository)
 |
 +- dragon/
 | |
 | +- index.rb
 | +- other source files
 |
 +- experimental/
 |
 + index.rb

	Open main.rb and add the following to the top of the file: require "app/dragonruby-game-toolkit-contrib/dragon/index.rb".

	If you are feeling adventurous also add require "app/dragonruby-game-toolkit-contrib/experimental/index.rb".

General Stuff

	You have 1280x720 pixels to work with. The bottom left corner is 0, 0
with X increasing going right, and Y increasing going up.

	The game is on a fixed 60 fps cycle (no delta time needed).

	Come to the Discord if you need help: http://discord.dragonruby.org

	Going through all the sample apps is a REALLY GOOD IDEA. Most sample apps
contain a recorded replay/demo. So just double click watch-recording to
see a full presentation of the sample.

Entry Point

For all the examples in the other documentation files. It’s assumed they
are being placed into the follow code block:

Entry point placed in main.rb
def tick args
 args.outputs.labels << [100, 100, 'hello world']
end

New to Ruby

If you are a complete beginner and have never coded before:

	Run the 00_beginner_ruby_primer sample app and work through it.
Video walkthrough: https://s3.amazonaws.com/s3.dragonruby.org/dragonruby-gtk-primer.mp4

	Read all the code in the 00_intermediate_ruby_primer sample app.
Video walkthrough: https://s3.amazonaws.com/s3.dragonruby.org/dragonruby-gtk-intermediate.mp4

	There is also a free course you can sign up for at http://dragonruby.school

Labels

Labels display text.

Sample Apps Related to Label Usage (ordered by size of codebase increasing)

	01_api_01_labels

	01_api_99_tech_demo (includes recording)

	10_save_load_game (includes recording)

	18_moddable_game

	19_lowrez_jam_01_hello_world

	99_sample_game_return_of_serenity

Minimum Code

Creates a label with black text at location 100, 100.

X Y TEXT
args.outputs.labels << [100, 100, "Hello world"]

Font Size

The size can be a number between -10 and +10. The default size is 0.

X Y TEXT SIZE
args.outputs.labels << [100, 100, "Hello world", 5]

Alignment

Alignment values are 0 (left, default), 1 (center), and 2
(right). The value must come after the size.

A label smack dab in the center of the screen, with a center alignment:

X Y TEXT SIZE ALIGNMENT
args.outputs.labels << [640, 360, "Hello world", 0, 1]

RGBA - Colors and Alpha

Labels can have colors. The value for the color is an number between
0 and 255.

A green label with 50% opacity.

X Y TEXT RED GREEN BLUE ALPHA
args.outputs.labels << [640, 360, "Hello world", 0, 255, 0, 128]

A green label with size and alignment.

X Y TEXT SIZE ALIGNMENT RED GREEN BLUE ALPHA
args.outputs.labels << [640, 360, "Hello world", 0, 1, 0, 255, 0, 128]

Custom Font

You can override the font for a label. The font needs to be under the
mygame directory. It’s recommended that you create a fonts folder
to keep things organized.

Here is how you create a label with a font named coolfont.ttf under a directory mygame/fonts.

X Y TEXT SIZE ALIGNMENT RED GREEN BLUE ALPHA FONT FILE
args.outputs.labels << [640, 360, "Hello world", 0, 1, 0, 0, 0, 255, "fonts/coolfont.ttf"]

Hashes (Advanced)

If you want a more readable invocation. You can use the following hash to create a label.
Any parameters that are not specified will be given a default value. The keys of the hash can
be provided in any order.

Here is how you create a green label with a font named coolfont.ttf under a directory mygame/fonts
using the helper method (providing all the parameters).

args.outputs.labels << {
 x: 200,
 y: 550,
 text: "dragonruby",
 size_enum: 2,
 alignment_enum: 1,
 r: 155,
 g: 50,
 b: 50,
 a: 255,
 font: "fonts/manaspc.ttf"
}

Duck Typing (Advanced)

You can also create a class with line properties and render it as a primitive.
ALL properties must on the class. ADDITIONALLY, a method called
primitive_marker must be defined on the class.

Here is an example:

Create type with ALL sprite properties AND primitive_marker
class Label
 attr_accessor :x, :y, :text, :size_enum, :alignment_enum, :font, :r, :g, :b, :a

 def primitive_marker
 :label
 end
end

Inherit from type
class TitleLabel < Label

 # constructor
 def initialize x, y, text
 self.x = x
 self.y = y
 self.text = text
 end
end

render layer label

args.outputs.label << TitleLabel.new(10, 10, "The Game")

Solids and Borders

Solids and Borders are great to use as place holders for sprites.

Sample Apps Releated to Solid/Borders Usage (ordered by size of codebase increasing)

	01_api_03_rects

	01_api_99_tech_demo (includes recording)

	02_collisions

	12_top_down_area (includes recording)

	99_sample_game_flappy_dragon (includes recording)

	08_platformer_collisions

	20_roguelike_starting_point

	99_sample_game_pong (includes recording)

Minimum Code

Creates a solid black rectangle located at 100, 100. 160 pixels
wide and 90 pixels tall.

X Y WIDTH HEIGHT
args.outputs.solids << [100, 100, 160, 90]

Creates an unfilled black-bordered rectangle located at 100, 100.
160 pixels wide and 90 pixels tall.

X Y WIDTH HEIGHT
args.outputs.borders << [100, 100, 160, 90]

RGBA - Colors and Alpha

The value for the color and alpha is an number between 0 and 255. The
alpha property is optional and will be set to 255 if not specified.

Creates a green solid rectangle with an opacity of 50%.

X Y WIDTH HEIGHT RED GREEN BLUE ALPHA
args.outputs.solids << [100, 100, 160, 90, 0, 255, 0, 128]

Creates an unfilled green-bordered rectangle located at 100, 100.
160 pixels wide and 90 pixels tall and an opacity of 50%.

X Y WIDTH HEIGHT RED GREEN BLUE ALPHA
args.outputs.borders << [100, 100, 160, 90, 0, 255, 0, 128]

Creates a solid gray rectangle that covers the entire scene. Like a background.
The opacity is excluded because it’s 100% opaque (which has a value of 255).

X Y WIDTH HEIGHT RED GREEN BLUE
args.outputs.solids << [0, 0, 1280, 720, 128, 128, 128]

Hash (Advanced)

If you want a more readable invocation. You can use the following hash to create a solid.
Any parameters that are not specified will be given a default value. The keys of the hash can
be provided in any order.

args.outputs.solids << {
 x: 0,
 y: 0,
 w: 100,
 h: 100,
 r: 0,
 g: 255,
 b: 0,
 a: 255
}

args.outputs.borders << {
 x: 0,
 y: 0,
 w: 100,
 h: 100,
 r: 0,
 g: 255,
 b: 0,
 a: 255
}

Duck Typing (Advanced)

You can also create a class with solid/border properties and render it as a primitive.
ALL properties must on the class. ADDITIONALLY, a method called primitive_marker
must be defined on the class.

Here is an example:

Create type with ALL solid/border properties AND primitive_marker
class Solid (or Border)
 attr_accessor :x, :y, :w, :h, :r, :g, :b, :a_x

 def primitive_marker
 :solid (or :border)
 end
end

Inherit from type
class Square < Solid (or Border)
 # constructor
 def initialize x, y, size
 self.x = x
 self.y = y
 self.w = size
 self.h = size
 end
end

render solid/border

args.outputs.solids << Square.new(10, 10, 32)
args.outputs.borders << Square.new(10, 10, 32)

Lines

Lines are 1 pixel wide and can be diagonal.

Sample Apps Related to Line Usage (ordered by size of codebase increasing)

	01_api_02_lines

	01_api_99_tech_demo (includes recording)

	06_coordinate_systems (includes recording)

	19_lowrez_jam_01_hello_world

	99_sample_game_pong (includes recording)

Minimum Code

Creates a black line from the bottom left corner to the top right corner.

X1 Y1 X2 Y2
args.outputs.lines << [0, 0, 1280, 720]

Creates a black vertical line through the center of the scene.

X1 Y1 X2 Y2
args.outputs.lines << [640, 0, 640, 720]

Creates a black horizontal line through the center of the scene.

X1 Y1 X2 Y2
args.outputs.lines << [0, 360, 1280, 360]

RGBA - Colors and Alpha

The value for the color and alpha is an number between 0 and 255. The
alpha property is optional and will be set to 255 if not specified.

Creates a green horizontal line through the center of the scene with an opacity of 50%.

X1 Y1 X2 Y2 RED GREEN BLUE ALPHA
args.outputs.lines << [0, 360, 1280, 360, 0, 255, 0, 128]

Creates a green vertical line through the center of the scene.
The opacity is excluded because it’s 100% opaque (which has a value of 255).

X1 Y1 X2 Y2 RED GREEN BLUE
args.outputs.lines << [640, 0, 640, 720, 0, 255, 0]

Hash (Advanced)

If you want a more readable invocation. You can use the following hash to create a line.
Any parameters that are not specified will be given a default value. The keys of the hash can
be provided in any order.

args.outputs.lines << {
 x: 0,
 y: 0,
 x2: 1280,
 y2: 720,
 r: 0,
 g: 255,
 b: 0,
 a: 255
}

Duck Typing (Advanced)

You can also create a class with line properties and render it as a primitive.
ALL properties must on the class. ADDITIONALLY, a method called primitive_marker
must be defined on the class.

Here is an example:

Create type with ALL line properties AND primitive_marker
class Line
 attr_accessor :x, :y, :x2, :y2, :r, :g, :b, :a

 def primitive_marker
 :line
 end
end

Inherit from type
class VerticalLine < Line

 # constructor
 def initialize x, y, h
 self.x = x
 self.y = y
 self.x2 = x
 self.y2 = y + h
 end
end

render line

args.outputs.lines << VerticalLine.new(10, 10, 100)

Sprites

Sprites are the most important visual component of a game.

Sample Apps Related to Sprite Usage (ordered by size of codebase increasing)

	01_api_04_sprites

	01_api_99_tech_demo (includes recording)

	02_sprite_animation_and_keyboard_input (includes recording)

	08_platformer_collisions_metroidvania

	09_controller_analog_usage_advanced_sprites

	99_sample_game_basic_gorillas (includes recording)

	99_sample_game_dueling_starships (includes recording)

	99_sample_game_flappy_dragon (includes recording)

	99_sample_game_return_of_serenity

Minimum Code

Sprites need to be under the mygame directory. It’s recommended that you create a sprites folder
to keep things organized. All sprites must be .png files

Here is how you create an sprite with located at 100, 100, that is 32 pixels wide and 64 pixels tall.
In this example the sprite name is player.png and is located under a directory mygame/sprites.

X Y WIDTH HEIGHT PATH
args.outputs.sprites << [100, 100, 32, 64, "sprites/player.png"]

Rotation / Angle

Unlike solids and borders, sprites can be rotated. This is how you rotate a sprite 90 degress.

Note: All angles in DragonRuby Game Toolkit are represented in degrees (not radians).

X Y WIDTH HEIGHT PATH ANGLE
args.outputs.sprites << [100, 100, 32, 64, "sprites/player.png", 90]

Alpha

Sprites can also have a transparency associated with them. The transparency value must come after
the angle value and supports a number between 0 and 255.

This is how you would define a sprite with no rotation, and a 50% transparency.

X Y WIDTH HEIGHT PATH ANGLE ALPHA
args.outputs.sprites << [100, 100, 32, 64, "sprites/player.png", 0, 128]

Color Saturations

A Sprite’s color levels can be changed. The color saturations must come after angle and
alpha values.

This is a sprite with no rotation, fully opaque, and with a green tint.

args.outputs.sprites << [100, # X
 100, # Y
 32, # W
 64, # H
 "sprites/player.png", # PATH
 0, # ANGLE
 255, # ALPHA
 0, # RED_SATURATION
 255, # GREEN_SATURATION
 0] # BLUE_SATURATION

Sprite Sub Division / Tile

You can render a portion of a sprite (a tile). The sub division of the sprite is denoted as a rectangle
directly related to the original size of the png.

This is a sprite scaled to 100 pixels where the source “tile” is located at the bottom left corner
within a 32 pixel square. The angle, opacity, and color levels of the tile are unaltered.

args.outputs.sprites << [100, # X
 100, # Y
 32, # W
 64, # H
 "sprites/player.png", # PATH
 0, # ANGLE
 255, # ALPHA
 0, # RED_SATURATION
 255, # GREEN_SATURATION
 0, # BLUE_SATURATION
 0, # TILE_X
 0, # TILE_Y
 32, # TILE_W
 32] # TILE_H

Flipping a Sprite Horizontally and Vertically

A sprite can be flipped horizontally and vertically.

This is a sprite that has been flipped horizontally. The sprites’s angle, alpha, color saturations,
and tile subdivision are unaltered.

args.outputs.sprites << [100, # X
 100, # Y
 32, # W
 64, # H
 "sprites/player.png", # PATH
 0, # ANGLE
 255, # ALPHA
 0, # RED_SATURATION
 255, # GREEN_SATURATION
 0, # BLUE_SATURATION
 0, # TILE_X
 0, # TILE_Y
 32, # TILE_W
 32, # TILE_H
 true, # FLIP_HORIZONTALLY
 false] # FLIP_VERTICALLY

This is a sprite that has been flipped vertically. The sprites’s angle, alpha, color saturations,
and tile subdivision are unaltered.

args.outputs.sprites << [100, # X
 100, # Y
 32, # W
 64, # H
 "sprites/player.png", # PATH
 0, # ANGLE
 255, # ALPHA
 0, # RED_SATURATION
 255, # GREEN_SATURATION
 0, # BLUE_SATURATION
 0, # TILE_X
 0, # TILE_Y
 32, # TILE_W
 32, # TILE_H
 false, # FLIP_HORIZONTALLY
 true] # FLIP_VERTICALLY

Rotation Center

A sprites center of rotation can be altered.

This is a sprite that has its rotation center set to the top-middle. The sprites’s angle, alpha, color saturations,
tile subdivision, and projectsions are unaltered.

args.outputs.sprites << [100, # X
 100, # Y
 32, # W
 64, # H
 "sprites/player.png", # PATH
 0, # ANGLE
 255, # ALPHA
 255, # RED_SATURATION
 255, # GREEN_SATURATION
 0, # BLUE_SATURATION
 0, # TILE_X
 0, # TILE_Y
 -1, # TILE_W
 -1, # TILE_H
 false, # FLIP_HORIZONTALLY
 false, # FLIP_VERTICALLY
 0.5, # ANGLE_ANCHOR_X
 1.0] # ANCHOR_Y

Hash (Advanced)

If you want a more readable invocation. You can use the following hash to create a sprite.
Any parameters that are not specified will be given a default value. The keys of the hash can
be provided in any order.

args.outputs.sprites << {
 x: 100,
 y: 100,
 w: 100,
 h: 100,
 path: "sprites/player.png",
 angle: 0,
 a, 255
 r: 255,
 g: 255,
 b: 255,
 tile_x: 0,
 tile_y: 0,
 tile_w: -1,
 tile_h: -1,
 flip_vertically: false,
 flip_horizontally: false,
 angle_anchor_x: 0.5,
 angle_anchor_y: 1.0
}

Duck Typing (Advanced)

You can also create a class with sprite properties and render it as a primitive.
ALL properties must on the class. ADDITIONALLY, a method called primitive_marker
must be defined on the class.

Here is an example:

Create type with ALL sprite properties AND primitive_marker
class Sprite
 attr_accessor :x, :y, :w, :h, :path, :angle, :a, :r, :g, :b, :tile_x,
 :tile_y, :tile_w, :tile_h, :flip_horizontally,
 :flip_vertically, :angle_anchor_x, :angle_anchor_y

 def primitive_marker
 :sprite
 end
end

Inherit from type
class PlayerSprite < Sprite

 # constructor
 def initialize x, y, w, h
 self.x = x
 self.y = y
 self.w = w
 self.h = h
 self.path = 'sprites/player.png'
 end
end

#render player sprite

args.outputs.sprites << PlayerSprite.new(10, 10, 32, 64)

Keyboard

Determining if a key is in the down state (pressed). This happens once each time the key is pressed:

if args.inputs.keyboard.key_down.a
 puts 'The key is pressed'
end

Determining if a key is being held. This happens every tick while the key is held down:

if args.inputs.keyboard.key_held.a
 puts 'The key is being held'
end

Determining if a key is in the down state or is being held:

if args.inputs.keyboard.a
 puts 'The key is pressed or being held'
end

Determining if a key is in the up state (released). This happens once each time the key is released:

if args.inputs.keyboard.key_up.a
 puts 'The key is released'
end

Truthy Keys

You can access all triggered keys through truthy_keys on keyboard, controller_one, and controller_two.

This is how you would right all keys to a file. The game must be in the foreground and have focus for this data
to be recorded.

def tick args
 [
 [args.inputs.keyboard, :keyboard],
 [args.inputs.controller_one, :controller_one],
 [args.inputs.controller_two, :controller_two]
].each do |input, name|
 if input.key_down.truthy_keys.length > 0
 args.gtk.write_file("mygame/app/#{name}_key_down_#{args.state.tick_count}", input.key_down.truthy_keys.to_s)
 end
 end
end

List of keys:

These are the character and associated properities that will
be set to true.

For example A => :a, :shift means that args.inputs.keyboard.a
would be true and so would args.inputs.keyboard.shift
(if both keys were being held or in the down state).

A => :a, :shift
B => :b, :shift
C => :c, :shift
D => :d, :shift
E => :e, :shift
F => :f, :shift
G => :g, :shift
H => :h, :shift
I => :i, :shift
J => :j, :shift
K => :k, :shift
L => :l, :shift
M => :m, :shift
N => :n, :shift
O => :o, :shift
P => :p, :shift
Q => :q, :shift
R => :r, :shift
S => :s, :shift
T => :t, :shift
U => :u, :shift
V => :v, :shift
W => :w, :shift
X => :x, :shift
Y => :y, :shift
Z => :z, :shift
! => :exclamation_point
0 => :zero
1 => :one
2 => :two
3 => :three
4 => :four
5 => :five
6 => :six
7 => :seven
8 => :eight
9 => :nine
\b => :backspace
\e => :escape
\r => :enter
\t => :tab
(=> :open_round_brace
) => :close_round_brace
{ => :open_curly_brace
} => :close_curly_brace
[=> :open_square_brace
] => :close_square_brace
: => :colon
; => :semicolon
= => :equal_sign
- => :hyphen
 => :space
$ => :dollar_sign
" => :double_quotation_mark
' => :single_quotation_mark
` => :backtick
~ => :tilde
. => :period
, => :comma
| => :pipe
_ => :underscore
=> :hash
+ => :plus
@ => :at
/ => :forward_slash
\ => :back_slash
* => :asterisk
< => :less_than
> => :greater_than
^ => :greater_than
& => :ampersand
² => :superscript_two
§ => :section_sign
? => :question_mark
% => :percent_sign
º => :ordinal_indicator
right arrow => :right
left arrow => :left
down arrow => :down
up arrow => :up
delete key => :delete
control key => :control
windows key/command key => :meta
alt key => :alt

Mouse

Determining current position of mouse:

args.inputs.mouse.x
args.inputs.mouse.y

Determining if the mouse has been clicked, and it’s position. Note:
click and down are aliases for each other.

if args.inputs.mouse.click
 puts "click: #{args.inputs.mouse.click}"
 puts "x: #{args.inputs.mouse.click.point.x}"
 puts "y: #{args.inputs.mouse.click.point.y}"
end

Determining if the mouse button has been released:

if args.inputs.mouse.up
 puts "up: #{args.inputs.mouse.up}"
 puts "x: #{args.inputs.mouse.up.point.x}"
 puts "y: #{args.inputs.mouse.up.point.y}"
end

Determine which mouse button(s) have been clicked (also works for up):

if args.inputs.mouse.click
 puts "left: #{args.inputs.mouse.button_left}"
 puts "middle: #{args.inputs.mouse.button_middle}"
 puts "right: #{args.inputs.mouse.button_right}"
 puts "x1: #{args.inputs.mouse.button_x1}"
 puts "x2: #{args.inputs.mouse.button_x2}"
end

Determine if the mouse wheel is being used and its values for this tick:

if args.inputs.mouse.wheel
 puts "The wheel moved #{args.inputs.mouse.wheel.x} left/right"
 puts "The wheel moved #{args.inputs.mouse.wheel.y} up/down"
end

Controllers

There are two controllers you have access to:

args.inputs.controller_one
args.inputs.controller_two

Determining if a key was down:

if args.inputs.controller_one.key_down.a
 puts 'The key was in the down state'
end

Determining if a key is being held:

if args.inputs.controller_one.key_held.a
 puts 'The key is being held'
end

Determining if a key is released:

if args.inputs.controller_one.key_up.a
 puts 'The key is being held'
end

Truthy Keys

You can access all triggered keys through thruthy_keys on keyboard, controller_one, and controller_two.

This is how you would right all keys to a file. The game must be in the foreground and have focus for this data
to be recorded.

def tick args
 [
 [args.inputs.keyboard, :keyboard],
 [args.inputs.controller_one, :controller_one],
 [args.inputs.controller_two, :controller_two]
].each do |input, name|
 if input.key_down.truthy_keys.length > 0
 args.gtk.write_file("mygame/app/#{name}_key_down_#{args.state.tick_count}", input.key_down.truthy_keys.to_s)
 end
 end
end

List of keys:

args.inputs.controller_one.key_held.up
args.inputs.controller_one.key_held.down
args.inputs.controller_one.key_held.left
args.inputs.controller_one.key_held.right
args.inputs.controller_one.key_held.a
args.inputs.controller_one.key_held.b
args.inputs.controller_one.x
args.inputs.controller_one.y
args.inputs.controller_one.key_held.l1
args.inputs.controller_one.key_held.r1
args.inputs.controller_one.key_held.l2
args.inputs.controller_one.key_held.r2
args.inputs.controller_one.key_held.l3
args.inputs.controller_one.key_held.r3
args.inputs.controller_one.key_held.start
args.inputs.controller_one.key_held.select
args.inputs.controller_one.key_held.directional_up
args.inputs.controller_one.key_held.directional_down
args.inputs.controller_one.key_held.directional_left
args.inputs.controller_one.key_held.directional_right
args.inputs.controller_one.left_analog_x_raw,
args.inputs.controller_one.left_analog_y_raw,
args.inputs.controller_one.left_analog_x_perc,
args.inputs.controller_one.left_analog_y_perc,
args.inputs.controller_one.right_analog_x_raw,
args.inputs.controller_one.right_analog_y_raw,
args.inputs.controller_one.right_analog_x_perc,
args.inputs.controller_one.right_analog_y_perc

Documentation That Needs to be Organized

Class macro gtk_args

Here’s how you can use the gtk_args class method:

class Game
 gtk_args
 attr_accessor :current_scene, :other_custom_attrs

 def tick
 end
end

$game = Game.new

def tick args
 $game.args = args
 $game.tick
end

The code above is the similar to:

class Game
 attr_accessor :args, :grid, :state, :inputs, :outputs, :gtk, :passes,
 :current_scene, :other_custom_attrs

 def tick
 end
end

$game = Game.new

def tick args
 $game.args = args
 $game.grid = args.grid
 $game.state = args.state
 $game.outputs = args.outputs
 $game.gtk = args.gtk
 $game.passes = args.passes
 $game.tick
end

Monkey patching the runtime

You’re on your own if you do this :grimacing:

module GTK
 class Runtime
 alias_method :__original_tick_core__, :tick_core unless Runtime.instance_methods.include?(:__original_tick_core__)

 def tick_core
 __original_tick_core__
 $top_level.oh @args
 $top_level.god @args
 $top_level.why @args
 end
 end
end

def tick args
end

def oh args
end

def god args
end

def why args
end

MP3’s to Wav converstion script:

`ls .`.each_line.to_a.map do |l|
 l = l.strip
 if l.end_with? "mp3"
 `ffmpeg -i #{l} -acodec pcm_s16le -ar 44100 prep-#{l.split(".")[0]}.wav`
 `ffmpeg -y -i prep-#{l.split(".")[0]}.wav -f wav -bitexact -acodec pcm_s16le -ar 44100 -ac 1 #{l.split(".")[0]}.wav`
 end
end

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

